Saline Lowland-Drained (SLdr) 5-9 WR R032XY240WY Site Type: Rangeland MLRA: 32 – Northern Intermountain Desertic Basins # **United States Department of Agriculture Natural Resources Conservation Service** ## **Ecological Site Description** Site Type: Rangeland Site Name: Saline Lowland-Drained (SLdr) 5-9" Wind River Basin Precipitation Zone Site ID: R032XY240WY Major Land Resource Area: 32 – Northern Intermountain Desertic Basins ## **Physiographic Features** This site normally occurs on land that receives overflow or runoff from adjacent slopes. Landform: alluvial fans, drainage ways & stream terraces Aspect: N/A Elevation (feet): 4500 6600 Slope (percent): 0 6 Water Table Depth (inches): None within 60 inches Flooding: Frequency: None occasional Duration: None brief Ponding: Depth (inches):00Frequency:NonerareDuration:NonebriefRunoff Class:negligiblelow #### Climatic Features Annual precipitation ranges from 5-9 inches per year. The normal precipitation pattern shows peaks in May and June and a secondary peak in September. This amounts to about 50% of the mean annual precipitation. Much of the moisture that falls in the latter part of the summer is lost by evaporation and much of the moisture that falls during the winter is lost by sublimation. Average snowfall is about 20 inches annually. Wide fluctuations may occur in yearly precipitation and result in more dry years than those with more than normal precipitation. Temperatures show a wide range between summer and winter and between daily maximums and minimums, due to the high elevation and dry air, which permits rapid incoming and outgoing radiation. Cold air outbreaks from Canada in winter move rapidly from northwest to southeast and account for extreme minimum temperatures. Chinook winds may occur in winter and bring rapid rises in temperature. Extreme storms may occur during the winter, but most severely affect ranch operations during late winter and spring. High winds are generally blocked from the basin by high mountains, but can occur in conjunction with an occasional thunderstorm. Technical Guide USDA NRCS Section IIE Rev. 03/11/05 Growth of native cool-season plants begins about April 1 and continues to about July 1. Cool weather and moisture in September may produce some green up of cool season plants that will continue to late October. The following information is from the "Pavillion" climate station: | | <u>Minimum</u> | <u>Maximum</u> | 5 yrs. out of 10 between | |-------------------------------------|----------------|----------------|--------------------------| | Frost-free period (days): | 95 | 175 | May 19 – September 19 | | Freeze-free period (days): | 98 | 185 | May 6 – October 3 | | Mean Annual Precipitation (inches): | 2.50 | 12.54 | | Mean annual precipitation: 7.85 inches Mean annual air temperature: 44.53°F (30.5°F Avg. Min. to 58.5°F Avg. Max.) For detailed information visit the Natural Resources Conservation Service National Water and Climate Center at http://www.wcc.nrcs.usda.gov/ website. Other climate station(s) representative of this precipitation zone include" Riverton", "Arminto", and "Lost Cabin". ## **Influencing Water Features** | Wetland Description: | <u>System</u> | <u>Subsystem</u> | <u>Class</u> | <u>Sub-class</u> | |----------------------|---------------|------------------|--------------|------------------| | None | None | None | None | None | Stream Type: None ## **Representative Soil Features** The soils of this site are moderately deep and very deep poorly to well-drained soils formed in alluvium. These soils have moderate to rapid permeability and are moderately to strongly saline and/or alkaline. Higher soluble salt concentrations may be found in the subsoils. The surface soil will be highly variable and vary from 2 to 8 inches in thickness. A water table if present is below 5 feet and is too deep to benefit the herbaceous species. These areas are subject to occasional overflow. The soil characteristics having the most influence on the plant community are the elimination of the water table near the surface, reduction in the potential to flood and the elevated quantities of soluble salts. Major Soil Series correlated to this site include: Other Soil Series correlated in MLRA 32 to this site include: Parent Material Kind: alluvium Parent Material Origin: sandstone, shale Surface Texture: loam, clay loam, silt loam, clay, very fine sandy loam, fine sandy loam, sandy loam, silty clay Surface Texture Modifier: none Subsurface Texture Group: loam, sandy loam, fine sandy loam Surface Fragments \leq 3" (% Cover): 0 Surface Fragments > 3" (%Cover): 0 Subsurface Fragments \leq 3" (% Volume): 0 Subsurface Fragments > 3" (% Volume): 0 | | <u>Minimum</u> | <u>Maximum</u> | |----------------------------------------------|----------------|------------------| | Drainage Class: | poor | well | | Permeability Class: | moderate | moderately rapid | | Depth (inches): | 20 | >60 | | Electrical Conductivity (mmhos/cm) ≤20": | 4 | 16 | | Sodium Absorption Ratio <u><</u> 20": | 8 | >16 | | Soil Reaction (1:1 Water) <u><</u> 20": | 7.4 | 9.0 | | Soil Reaction (0.1M CaCl2) <u><</u> 20": | NA | NA | | Available Water Capacity (inches) ≤30": | 3.3 | 4.5 | | Calcium Carbonate Equivalent (percent) <20": | 0 | 10 | #### **Plant Communities** ## **Ecological Dynamics of the Site:** This site occurs as a direct result of a hydrologic disruption to the Saline Lowland 5-9 WR ecological site (See Saline Lowland Ecological Site Description). This disturbance, whether natural or human caused, alters the hydrologic function of a Saline Lowland to such a degree that rehabilitation is not an option. As a result, subsoil that at one time was sufficiently moist during part of the growing season is literally drained as water is now diverted to deeply incised channels. Consequently, supplemental water that was predictable and available to herbaceous plants during part of the growing year is now lacking and the water table is permanently below the rooting depth of these plants. This site, however, gets an occasional overflow from the adjacent uplands and the water table is commonly at a depth that is still beneficial to deep-rooted shrub species. Potential vegetation on this site is dominated by tall and mid perennial grasses, which can tolerate soils with moderate amounts of salinity and alkalinity and adapt to periodic overflows. Other significant vegetation includes greasewood, Gardner's saltbush, and a variety of forbs. The expected potential composition for this site is about 70% grasses, 10% forbs and 20% woody plants. The composition and production will vary naturally due to historical use, fluctuating precipitation and fire frequency. As this site deteriorates, species such as inland saltgrass and greasewood will increase. Weedy annuals will invade. Grasses such as alkali sacaton, rhizomatous wheatgrasses, Indian ricegrass and basin wildrye will decrease in frequency and production. The Historic Climax Plant Community (description follows the plant community diagram) has been determined by study of rangeland relic areas, or areas protected from excessive disturbance. Trends in plant communities going from heavily grazed areas to lightly grazed areas, seasonal use pastures, and historical accounts have also been used. The following is a State and Transition Model Diagram that illustrates the common plant communities (states) that can occur on the site and the transitions between these communities. The ecological processes will be discussed in more detail in the plant community narratives following the diagram. MLRA: 32 - Northern Intermountain Desertic Basins # From Saline Lowland Ecological Site **BM** - Brush Management (fire, chemical, mechanical) **Freq. & Severe Grazing** - Frequent and Severe Utilization of the Cool-season Mid-grasses during the Growing Season **GLMT** - Grazing Land Mechanical Treatment LTPG - Long-term Prescribed Grazing MCSLG - Moderate, Continuous Season-long Grazing NU, NF - No Use and No Fire **PG** - Prescribed Grazing (proper stocking rates with adequate recovery periods during the growing season) **VLTPG** - Very Long-term Prescribed Grazing (could possibly take generations) **WF** - Wildfire Technical Guide Section IIE USDA-NRCS Rev. 03/11/05 # Plant Community Composition and Group Annual Production Reference Plant Community (HCPC) | COMMON NAME/GROUP NAME | SCIENTIFIC NAME | SYMBOL | Annua | | Normal Year) | |-------------------------------------|---------------------------------|---------|-------|-----------|--------------| | COMMON NAME/GROUP NAME | SCIENTIFIC NAME | STWIBOL | Group | Total: 52 | % Comp. | | GRASSES AND GRASS-LIKES | | | Group | 103.74016 | 70 Comp. | | GRASSES/GRASSLIKES | | | | | | | Inland saltgrass | Distichlis spicata | DISP | 1 | 53 - 105 | 10 - 20 | | Alkali sacaton | Sporobolus airoides | SPAI | 2 | 26 - 79 | 5 - 15 | | Basin wildrye | Leymus cinereus | LECI4 | 3 | 26 - 53 | 5 - 10 | | Bottlebrush squirreltail | Elymus elymoides | ELELE | 4 | 26 - 79 | 5 - 15 | | Indian ricegrass | Achnatherum hymenoides | ACHY | 5 | 26 - 53 | 5 - 10 | | Western wheatgrass | Pascopyrum smithii | PASM | 6 | 26 - 79 | 5 - 15 | | MISC. GRASSES/GRASSLIKES | | | 7 | 26 - 79 | 5 - 15 | | Canada wildrye | Elymus canadensis | ELCA4 | 7 | 0 - 26 | 0 - 5 | | Alkali bluegrass | Poa secunda ssp. juncifolia | POSEJ | 7 | 0 - 26 | 0 - 5 | | Blue grama | Bouteloua gracilis | BOGR2 | 7 | 0 - 26 | 0 - 5 | | Mat muhly | Muhlenbergia richardsonis | MURI | 7 | 0 - 26 | 0 - 5 | | other perennial grasses (native) | | 2GP | 7 | 0 - 26 | 0 - 5 | | FORBS | | | 8 | 0 - 53 | 0 - 10 | | Smooth woodyaster | Xylorhiza glabruiscula | XUGL | 8 | 0 - 26 | 0 - 5 | | Wild onion | Allium textile | ALTE | 8 | 0 - 26 | 0 - 5 | | Hood's phlox | Phlox hoodii | PHHO | 8 | 0 - 26 | 0 - 5 | | Pursh seepweed | Suaeda calceoliformis | SUCA2 | 8 | 0 - 26 | 0 - 5 | | Povertyweed | Iva axillaris | IVAX | 8 | 0 - 26 | 0 - 5 | | Plains pricklypear cactus | Opuntia polyacantha | OPPO | 8 | 0 - 26 | 0 - 5 | | other perennial forbs (native) | | 2FP | 8 | 0 - 26 | 0 - 5 | | TREES/SHRUBS | | | | | | | Greasewood | Sarcobatus vermiculatus | SAVE4 | 9 | 26 - 79 | 5 - 15 | | Gardner's saltbush | Atriplex gardneri | ATGA | 10 | 5 - 26 | 1 - 5 | | MISC. SHRUBS | | | 11 | 5 - 53 | 1 - 10 | | Rubber rabbitbrush | Ericameria nauseosa | ERNA10 | 11 | 0 - 26 | 0 - 5 | | Green rabbitbrush | Chrysothamnus viscidiflorus | CHVI8 | 11 | 0 - 26 | 0 - 5 | | Basin big sagebrush | Artemisia tridentata tridentata | ARTRT | 11 | 0 - 26 | 0 - 5 | | other shrubs & half shrubs (native) | | 2SHRUB | 11 | 0 - 26 | 0 - 5 | This list of plants and their relative proportions are based on near normal years. Fluctuations in species composition and relative production may change from year to year dependent upon precipitation or other climatic factors. ## **Plant Community Narratives** Following are the narratives for each of the described plant communities. These plant communities may not represent every possibility, but they probably are the most prevalent and repeatable plant communities. The plant composition tables shown above have been developed from the best available knowledge at the time of this revision. As more data is collected, some of these plant communities may be revised or removed, and new ones may be added. None of these plant communities should necessarily be thought of as "Desired Plant Communities". According to the USDA NRCS National Range and Pasture Handbook, Desired Plant Communities (DPC's) will be determined by the decision-makers and will meet minimum quality criteria established by the NRCS. The main purpose for including any description of a plant community here is to capture the current knowledge and experience at the time of this revision. #### Inland Saltgrass/Alkali Sacaton/Western Wheatgrass Plant Community The interpretive plant community for this site is the Historic Climax Plant Community. This state evolved with grazing by large herbivores and periodic fires. Potential vegetation is about 70% grasses or grass-like plants, 10% forbs and 20% woody plants. Tall and medium grasses, which can tolerate saline and/or alkali conditions and occasional overflows, dominate this plant community. The major grasses include inland saltgrass, alkali sacaton, rhizomatous wheatgrasses, bottlebrush squirreltail, basin wildrye, and Indian ricegrass. Woody plants are greasewood and Gardner's saltbush. A variety of forbs also occurs in this state and plant diversity is high (see Plant Composition Table). The total annual production (air-dry weight) of this state is about 525 pounds per acre, but it can range from about 350 lbs./acre in unfavorable years to about 800 lbs./acre in above average years. The following is the growth curve of this plant community expected during a normal year: Growth curve number: Growth curve name: Growth curve description: | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | 0 | 0 | 0 | 10 | 30 | 35 | 10 | 5 | 5 | 5 | 0 | 0 | (Monthly percentages of total annual growth) This state is stable and well adapted to the Northern Great Plains climatic conditions. The diversity in plant species allows for high drought resistance. This is a sustainable plant community (site/soil stability, watershed function, and biologic integrity). Typically, relic rill and gullies are visible but are now stable. No recent accelerated erosion should be occurring in this state. Transitions or pathways leading to other plant communities are as follows: <u>Moderate, continuous season-long grazing</u> will convert this plant community to the Inland Saltgrass/Rhizomatous Wheatgrasses/Greasewood Plant community. Prolonged Drought will exacerbate this transition. #### Inland Saltgrass/Rhizomatous Wheatgrasses/Greasewood Plant Community This plant community evolved under moderate grazing by domestic livestock and low fire frequency. Saline tolerant grasses make up the majority of the understory. Dominant grasses include rhizomatous wheatgrasses, inland saltgrass, alkali bluegrass, and alkali sacaton. Forbs commonly found in this plant community include wild onion, pursh seepweed, smooth goldaster, and povertyweed. Greasewood may comprise as much as 35% of the total annual production. When compared to the Historical Climax Plant Community, basin wildrye, Indian ricegrass, rhizomatous wheatgrasses, bottlebrush squirreltail, and alkali sacaton have decreased. Inland saltgrass, blue grama, greasewood and rubber rabbitbrush have increased. The total annual production (air-dry weight) of this state is about 450 pounds per acre, but it can range from about 275 lbs./acre in unfavorable years to about 600 lbs./acre in above average years. The following is the growth curve expected during a normal year: Growth curve number: Growth curve name: Growth curve description: | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | 0 | 0 | 0 | 5 | 20 | 30 | 15 | 10 | 15 | 5 | 0 | 0 | (Monthly percentages of total annual growth) This state is stable and protected from excessive erosion. The herbaceous component is mostly intact and plant vigor and replacement capabilities are sufficient. Only minimal occurrences of water flow patterns and litter movement is evident. Incidence of pedestalling is minimal. Soils are mostly stable and the surface shows minimum soil loss. The watershed is functioning and the biotic community is intact. Transitional pathways leading to other plant communities are as follows: - <u>Prescribed grazing and possible long-term prescribed grazing will result in a plant community very similar to the *Historic Climax Plant Community*, except that greasewood will persist without a return to a normal fire regime or some form of brush control.</u> - Frequent and severe grazing with brush management or wildfire will convert this plant community to the Short Grass Sod *Vegetation State*. - Frequent and severe grazing with the occasional overflow and no fire will convert this plant community to the Mixed Shrub/Short Grass Sod Plant Community. - <u>Frequent and severe grazing with no overflow and no fire will convert this plant community to the Dense Shrub/Bare Ground Plant Community</u>. Prolonged Drought will exacerbate this transition. #### Mixed Shrub/Short Grass Sod Plant Community This plant community is the result of frequent and severe grazing with periodic overflows and no fire or brush control. This plant community is dominated by a dense sod of inland saltgrass, blue grama and alkali bluegrass and includes a mosaic shrub overstory. Greasewood and rubber rabbitbrush are the dominant overstory but Gardner's saltbush is also an important shrub in this plant community. Shrubs comprise less than 35% of the annual production and are kept in check by the herbaceous sod understory. When compared to the Historic Climax Plant Community, the tall and medium grasses are absent. Short warm season grasses are dominant and weedy annuals are common. Shrubs will have increased as a percentage of the total production, but will not dominate as the sod prevents a homogeneous shrub cover. Noxious weeds such as Russian knapweed are present if a seed source is available. The total annual production (air-dry weight) of this state is about 260 pounds per acre, but it can range from about 150 lbs./acre in unfavorable years to about 400 lbs./acre in above average years. The following is the growth curve expected during a normal year: Growth curve number: Growth curve name: Growth curve description: | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | 0 | 0 | 0 | 5 | 25 | 35 | 20 | 5 | 5 | 5 | 0 | 0 | (monthly percentages of total annual growth) The sod component of this plant community is extremely resistant to change and continued frequent and severe grazing or the removal of grazing does not seem to affect the plant composition or structure of the plant community. The biotic integrity of this state is generally not functional as plant diversity is poor especially among the herbaceous species. However, the vegetative structure may still be partially intact as the shrub component is still within a reasonable percentage of the total composition. This sod bound plant community is very resistant to water infiltration. While this sod protects the site itself, excessive runoff increases erosion on bare ground areas and worsens the channelization already present. Water flow patterns are obvious in the bare ground areas and shrubs and sod patches are pedestalled. Rill channels are noticeable in the interspaces and lateral gullies will increase. The watershed is not normally functioning, as runoff is excessive and erosional processes are accelerated. Transitional pathways leading to other plant communities are as follows: - Grazing land mechanical treatment (chiseling and seeding, etc.) and brush management followed by prescribed grazing and if necessary seeding will return this plant community to near Historic Climax Plant Community. - <u>Frequent and severe grazing with no overflow</u> will convert this plant community to the *Dense Shrub/Bare Ground Sod Plant Community*. Prolonged Drought will exacerbate this transition. #### **Dense Shrub/Bare Ground Plant Community** This plant community evolved under frequent and severe grazing with the absence of fire. Greasewood and rubber rabbitbrush are the dominant species of this plant community. Tall and medium grasses have been eliminated. The interspaces between shrubs have expanded leaving the amount of bare ground more prevalent and more soil surface exposed to erosive elements. The annual grasses and forbs, such as cheatgrass, foxtail barley, kochia, halogeton, and Russian thistle, make up the dominant understory along with noxious weeds such as Russian knapweed. Total annual production is mostly from shrubs and these weedy annuals. The total annual production (air-dry weight) of this state is about 350 pounds per acre, but it can range from about 100 lbs./acre in unfavorable years to about 450 lbs./acre in above average years. Saline Lowland-Drained (SLdr) 5-9 WR R032XY240WY Site Type: Rangeland MLRA: 32 – Northern Intermountain Desertic Basins The following is the growth curve expected during a normal year: Growth curve number: Growth curve name: Growth curve description: | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | 0 | 0 | 0 | 10 | 30 | 35 | 10 | 5 | 5 | 5 | 0 | 0 | (monthly percentages of total annual growth) This plant community is resistant to change as the stand becomes more decadent. These areas may actually be more resistant to fire as less fine fuels are available and the bare ground between the shrubs is increased. Continued frequent and severe grazing or the removal of grazing does not seem to affect the plant composition or structure of the plant community. Annual grasses, weedy species and bare ground compromise the biotic integrity. Plant diversity is poor and the potential for native grasses to reproduce is absent. The shift in the vegetative structure and function is extreme and the biotic integrity is lost. Soil erosion is accelerated because of increased bare ground. Water flow patterns and pedestalling are obvious. Infiltration is reduced and runoff is increased. Rill channels may be noticeable in the interspaces and lateral gullies are numerous. Transitional pathways leading to other plant communities are as follows: - Prescribed grazing and possible long-term prescribed grazing will shift the vegetation to the Mixed Shrub/Short Grass Sod plant community - Brush management, followed by prescribed grazing and seeding if necessary, will return this plant community at or near the HCPC. If prescribed fire is used as a means to reduce or remove the shrubs, sufficient fine fuels will need to be present. This may require deferment from grazing prior to treatment. Since both greasewood and rubber rabbitbrush are difficult to remover or control repeated treatments or a combination of treatments may be necessary. Post management is critical to ensure success. This can range from two or more years of rest to partial growing season deferment, depending on the condition of the understory at the time of treatment and the growing conditions following treatment. In the case of an intense wildfire that occurs when desirable plants are not completely dormant, the length of time required to reach the HCPC may be increased and seeding of natives is recommended. ### **Short Grass Sod Plant Community** This plant community is the result of long-term improper grazing use and fire or some form of brush management. This state is dominated by inland saltgrass, blue grama, and alkali bluegrass sod. Areas with bare ground have increased and extend between the sodded surfaces. When compared to the Historic Climax Plant Community, the tall and medium grasses are absent. Short warm season grasses are dominant and weedy annuals are common. Noxious weeds such as Russian knapweed are present, if a seed source is available. The total annual production (air-dry weight) of this state is about 100 pounds per acre, but it can range from about 50 lbs./acre in unfavorable years to about 200 lbs./acre in above average years. The following is the growth curve expected during a normal year: Growth curve number: Growth curve name: ## Growth curve description: | Ī | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC | |---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----| | | 0 | 0 | 0 | 5 | 20 | 30 | 15 | 10 | 15 | 5 | 0 | 0 | (Monthly percentages of total annual growth) This sod is extremely resistant to change and continued frequent and severe grazing or the removal of grazing does not seem to affect the plant composition or structure of the plant community. The biotic integrity of this state is not functional and plant diversity is extremely low. This sod bound plant community is very resistant to water infiltration. While this sod protects the site itself, excessive runoff increases erosion on bare ground areas and worsens the channelization already present. Water flow patterns are obvious in the bare ground areas and pedestalling is apparent along the sod edges. Rill channels are noticeable in the interspaces and lateral gullies will increase. The watershed is not normally functioning, as runoff is excessive and erosional processes are accelerated. Transitional pathways leading to other plant communities are as follows: - Grazing land mechanical treatment (chiseling, etc.) followed by prescribed grazing and Reseeding native species, will return this plant community to near Historic Climax Plant Community condition. - Frequent and severe grazing with the occasional overflows and no fire will convert this state to the Mixed Shrub/Short Grass Sod Plant Community. ## **Ecological Site Interpretations** ## **Animal Community – Wildlife Interpretations** **Historic Climax Plant Community**: The predominance of grasses in this plant community favors grazers and mixed-feeders, such as bison, deer, and antelope. Suitable thermal and escape cover for wildlife is available as quantities of woody plants is adequate. In addition, topographical variations provide some escape cover as well. When found adjacent to sagebrush dominated states, this plant community may provide brood rearing/foraging areas for sage grouse. Other birds that would frequent this plant community include western meadowlarks, horned larks, and golden eagles as well as upland game birds. Many grassland obligate small mammals would occur here. Inland Saltgrass/Rhizomatous wheatgrasses/greasewood Plant Community: This plant community exhibits a moderate level of plant species diversity due to the accumulation of salts in the soil. It provides both thermal and escape cover for deer and antelope especially if other woody communities are nearby. Other birds that would frequent this plant community include western meadowlarks, horned larks, and golden eagles as well as upland game birds. Many grassland obligate small mammals would occur here. **Mixed Shrub/Short Grass Sod Plant Community:** These communities provide some foraging and cover for deer, antelope, and other large ungulates. This plant community, especially if proximal to other woody cover, may be used by sage grouse and other game birds for foraging and cover. Saline Lowland-Drained (SLdr) 5-9 WR R032XY240WY Site Type: Rangeland MLRA: 32 – Northern Intermountain Desertic Basins **Dense Shrub/Bare Ground Plant Community:** This plant community can provide important winter foraging and cover for mule deer and antelope. This community provides escape and thermal cover for large ungulates, as well as nesting habitat for sage grouse and other upland game birds. **Short Grass Sod Plant Community:** This plant community may be used by the same large grazers that would use the Historic Climax Plant Community. However, the plant community composition is less diverse and productive, thus, less apt to meet the seasonal needs of these animals. It may provide some foraging opportunities for sage grouse when it occurs proximal to woody cover. | COMMON NAME/
GROUP NAME | SCIENTIFIC NAME | SCIENTIFIC
SYMBOL | Cattle | Sheep | Horses | Mule Deer | Antelope | |--|---|----------------------|--------------|--------------|--------------|--------------|--------------| | GRASSES/GRASSLIKES alkali bluegrass | Poa secunda ssp. juncifolia | POSEJ | DDDD | PPPP | DDDD | PPPP | PPPP | | alkali cordgrass | Spartina gracilis | SPGR | DDDD | UUUU | DDDD | UUUU | UUUU | | alkali sacaton | Sporobolus airoides | SPAI | PPPP | DDDD | PPPP | DDDD | DDDD | | American mannagrass | Glyceria grandis | GLGR | DDDD | UUUU | DDDD | UUUU | UUUU | | American sloughgrass Baltic rush | Beckmannia syzigachne Juncus balticus | JUBA JUBA | DDDD
DDDD | UUUU | DDDD | UUUU | UUUU | | pasin wildrye | Leymus cinereus | LECI4 | PPPP | PPPP | PPPP | DDDD | DDDD | | peaked sedge | Carex rostrata | CARO6 | DDDD | UUUU | DDDD | UUUU | UUUU | | pearded wheatgrass | Elymus caninus | ELCA | PPPP | DDDD | PPPP | DDDD | DDDD | | oig bluegrass | Poa ampla (syn. to Poa secunda) | POAM (POSE)
BOGR2 | PPPP
DDDD | PPPP
DDDD | PPPP
DDDD | PPPP
DDDD | PPPP
DDDD | | blue grama
bluebunch wheatgrass | Bouteloua gracilis Pseudoroegneria spicata | PSSP6 | PPPP | PPPP | PPPP | DDDD | DDDD | | bottlebrush squirreltail | Elymus elymoides | ELELE | DDDD | DDDD | DDDD | UUUU | UUUU | | bulrush | Scirpus spp. | SCIRP | DDDD | UUUU | DDDD | UUUU | UUUU | | Canada wildrye | Elymus canadensis | ELCA4 | PPPP | PPPP | PPPP | DDDD | DDDD | | Fendler threeawn
Indian ricegrass | Aristida purpurea longiseta Achnatherum hymenoides | ARPUL
ACHY | UUUU
PPPP | UUUU
PPPP | PPPP | UUUU
PPPP | UUUU | | nland saltgrass | Distichlis spicata | DISP | UUUU | UUUU | UUUU | UUUU | UUUU | | ittle bluestem | Schizachyrium scoparium | SCSC | PPPP | PPPP | PPPP | DDDD | DDDD | | nat muhly | Muhlenbergia richardsonis | MURI | UUUU | UUUU | UUUU | UUUU | UUUU | | Nebraska sedge | Carex nebrascensis | CANE2 | PPPP | PPPP | PPPP | DDDD | DDDD | | needleandthread | Hesperostipa comata | HECO26
CAST13 | PPPP | PPPP | PPPP | PPPP | PPPP | | northern reedgrass
Nuttall's alkaligrass | Calamagrostis stricta Puccinellia nuttaliana | PUNU2 | PPPP | DDDD
PPPP | PPPP | UUUU
PPPP | UUUU
PPPP | | plains reedgrass | Calamagrostis montanensis | CAMO | DDDD | DDDD | DDDD | DDDD | DDDD | | prairie cordgrass | Spartina pectinata | SPPE | PPPP | DDDD | PPPP | UUUU | UUUU | | orairie junegrass | Koeleria macrantha | KOMA | DDDD | DDDD | DDDD | DDDD | DDDD | | prairie sandreed | Calamovilfa longifolia | CALO | PPPP | DDDD | PPPP | UUUU | UUUU | | eed canarygrass | Phalaris arundinacea | PHAR3 | DDDD | UUUU | DDDD | UUUU | UUUU | | rush
sand dropseed | Juncus spp. Sporobolus cryptandrus | JUNCU
SPCR | DDDD
DDDD | DDDD | DDDD | UUUU | UUUU | | Sandberg bluegrass | Poa secunda | POSE | DDDD | DDDD | DDDD | DDDD | DDDD | | slender wheatgrass | Elymus trachycaulus | ELTR7 | PPPP | DDDD | PPPP | DDDD | DDDD | | pike sedge | Carex nardina | CANA2 | DDDD | DDDD | DDDD | UUUU | UUUU | | hickspike wheatgrass | Elymus lanceolatus | ELLAL | DDDD | DDDD | DDDD | DDDD | DDDD | | threadleaf sedge | Carex filifolia | CAFI | DDDD
PPPP | DDDD
PPPP | DDDD
PPPP | DDDD | PPPP | | ufted hairgrass
vater sedge | Deschampsia caespitosa Carex aquatilis | DECA18
CAAQ | DDDD | UUUU | DDDD | UUUU | DDDD | | water sedge
western wheatgrass | Pascopyrum smithii | PASM | DDDD | DDDD | DDDD | DDDD | DDDD | | FORBS | | | | | | | | | American licorice | Glycyrrhiza lepidota | GLLE3 | UUUU | UUUU | UUUU | UUUU | UUUU | | American vetch | Vicia americana | VIAM | PPPP | PPPP | PPPP | PPPP | PPPP | | arrowgrass | Triglochin spp. | TRIGL | T | T
UUUU | T | T | T | | asters
padlands mule-ears | Aster spp. Wyethia scabra | ASTER
WYSC | UUUU | UUUU | UUUU | UUUU | UUUU | | beaked skeletonweed | Shinnersoseris rostrata | SHRO2 | UUUU | UUUU | UUUU | UUUU | UUUU | | piscuitroots | Lomatium spp. | LOMAT | DDDD | DDDD | UUUU | DDDD | DDDD | | olue-eyed grass | Sisyrinchium spp. | SISYR | DDDD | PPPP | DDDD | DDDD | DDDD | | oreadroot scurfpea | Pediomelum esculentum | PEES | DDDD | DDDD | DDDD | DDDD | DDDD | | outtecandle
cattail, broad-leaf | Cryptantha celosiodes Typha latifolia | CRCE
TYLA | DDDD | UUUU | DDDD | UUUU | UUUU | | cattail, narrow-leaf | Typha angustifolia | TYAN | DDDD | UUUU | DDDD | UUUU | UUUU | | desert princesplume | Stanleya pinnata | STPIP | Т | Т | Т | Т | Т | | Douglas' dustymaiden | Chaenactis douglasii | CHDO | UUUU | UUUU | UUUU | UUUU | UUUU | | leabane | Erigeron spp. | UUUU | UUUU | UUUU | UUUU | UUUU | UUUU | | foothills deathcamas | Zigadenus paniculatus | ZIPA2 | T | T | T | T | T | | fringed sagewort
green sagewort | Artemisia frigida Artemisia dracunculus | ARFR4
ARDR4 | UUUU | UUUU | UUUU | UUUU | UUUU | | nawksbeard | Crepis acuminata | CRAC2 | UUUU | PPPP | UUUU | DDDD | DDDD | | norsetails | Equisetum spp. | EQUIS | UUUU | UUUU | UUUU | UUUU | UUUU | | ndian paintbrush | Castilleja spp. | CASTI2 | DDDD | DDDD | DDDD | DDDD | DDDD | | ris | Iris spp. | IRIS | UUUU | UUUU | UUUU | UUUU | UUUU | | arkspur
icorice-root | Delphinium spp. Ligusticum spp. | DELPH
LIGUS | DDDD | DDDD
UUUU | DDDD | DDDD | DDDD | | upine | Lupinus spp. | LUPIN | DDDD | T | DDDD | DDDD | DDDD | | nilkvetch | Astragalus spp. | ASTRA | DDDD | DDDD | DDDD | DDDD | DDDD | | niner's candle | Cryptantha virgata | CRVI4 | UUUU | UUUU | UUUU | UUUU | UUUU | | nustard | Brassica spp. | BRASS2 | UUUU | UUUU | UUUU | UUUU | UUUU | | nailwort | Paronychia spp. | PARON | UUUU | UUUU | UUUU | UUUU | UUUU | | Nuttalli's povertyweed | Monolepis nuttalliana | MONU | UUUU
PPPP | UUUU
PPPP | PPPP | UUUU
PPPP | UUUU
PPPP | | enstemon | Penstemon spp. Phlox spp. | PENST
PHLOX | UUUU | UUUU | UUUU | UUUU | UUUU | | plains springparsley | Cymopterus acaulis | CYAC | UUUU | DDDD | UUUU | UUUU | UUUU | | poison hemlock | Conium maculatum | COMA2 | T | T | T | T | T | | rairie bluebells | Mertensia lanceolata | MELA3 | DDDD | PPPP | DDDD | DDDD | DDDD | | Pursh seepweed | Suaeda calceoliformis | SUCA2 | UUUU | UUUU | UUUU | UUUU | UUUU | | osy pussytoes
andwort | Antennaria rosea Arenaria spp. | ANRO2
ARENA | UUUU | UUUU | UUUU | UUUU | UUUU | | silverweed cinquefoil | Argentina anserina | ARAN7 | UUUU | UUUU | UUUU | UUUU | UUUU | | stemless goldenweed | Haplopappus acaulis | HAAC | UUUU | UUUU | UUUU | UUUU | UUUU | | ulphur flower buckwheat | Eriogonum umbellatum | ERUM | UUUU | UUUU | UUUU | UUUU | UUUU | | ufted evening-primrose | Oenothera caespitosa | OECA10 | UUUU | UUUU | UUUU | UUUU | UUUU | | wogrooved milkvetch | Astragalus bisulcatus | ASBI2 | T | T | T | T | T | | vater hemlocks | Cicuta spp. | CICUT | DDDD | T
DDDD | T
DDDD | DDDD | T
DDDD | | vestern buttercup | Ranunculus occidentalis Rumex aquaticus | RUAQ | UUUU | UUUU | UUUU | UUUU | UUUU | | restern dock | ι ιστιολ αγαατισμό | | | | UUUU | UUUU | UUUU | | | Achillea lanulosa | ACHIL | UUUU | UUUU | 0000 | 0000 | | | western dock
western yarrow
wild onion | Achillea lanulosa Allium textile | ACHIL
ALTE | DDDD | DDDD | DDDD | DDDD | DDDD | | western yarrow | | | | | | | | | TREES. SHRUBS & HALF-SHRUBS | | | | | | | | |-----------------------------|--|--------|------|--------------|------|------|------| | big sagebrush | Artemisia tridentata | ARTR2 | UUUU | DDDD | UUUU | DDDD | DDDD | | birdfoot sagebrush | Artemisia tridentata Artemisia pedatifida | ARPE6 | UUUU | UUUU | UUUU | UUUU | UUUU | | black greasewood | Sarcobatus vermiculatus | SAVE4 | DDDD | DDDD | UUUU | DDDD | DDDD | | black sagebrush | Artemisia nova | ARNO4 | DDDD | PPPP | UUUU | PPPP | PPPP | | broom snakeweed | Gutierrezia sarothrae | GUSA2 | UUUU | UUUU | UUUU | UUUU | UUUU | | bud sagebrush | Picrothamnus desertorum | PIDE4 | PPPP | PPPP | DDDD | PPPP | PPPP | | fourwing saltbush | Atriplex canescens | ATCA2 | PPPP | PPPP | PPPP | PPPP | PPPP | | Gardners saltbush | Atriplex gardneri | ATGA | PPPP | PPPP | DDDD | PPPP | PPPP | | green rabbitbrush | Chrysothamnus viscidiflorous | CHVI8 | DDDD | DDDD | DDDD | DDDD | DDDD | | plains cottonwood (sprouts) | Populous deltoides | PODEM | DDDD | DDDD | DDDD | DDDD | DDDD | | Rocky Mountain juniper | Juniperus scopulorum | JUSC2 | UUUU | UUUU | UUUU | DDDD | UUUU | | rubber rabbitbrush | Ericameria nauseosa | ERNA10 | UUUU | DDDD | UUUU | DDDD | DDDD | | shadscale saltbush | Atriplex confertifolia | ATCO | UUUU | UUUU | UUUU | UUUU | UUUU | | shortspine horsebrush | Tetradymia spinosa | TESP2 | UUUU | UUUU | UUUU | UUUU | UUUU | | silver sagebrush | Artemisia cana | ARCAC5 | DDDD | DDDD | DDDD | PPPP | PPPP | | silverberry | Eleagnus commutata | ELCO | UUUU | UUUU | UUUU | DDDD | UUUU | | skunkbush sumac | Rhus trilobata | RHTR | DDDD | DDDD | DDDD | DDDD | DDDD | | spiny hopsage | Grayia spinosa | GRSP | UUUU | UUUU | UUUU | UUUU | UUUU | | Utah juniper | Juniperus osteosperma | JUOS | UUUU | UUUU | UUUU | DDDD | UUUU | | wax currant | Ribes cereum | RICE | UUUU | UUUU | UUUU | DDDD | DDDD | | western snowberry | Symphoricarpos occidentalis | SYOC | UUUU | UUUU | UUUU | DDDD | UUUU | | wildrose | Rosa woodsii var. woodsii | ROWOW | DDDD | DDDD | UUUU | DDDD | DDDD | | willows | Salix spp. | SALIX | PPPP | PPPP | DDDD | PPPP | UUUU | | | | KRLA2 | PPPP | | | | PPPP | | winterfat | Krascheninnikovia lanata | YUGL | DDDD | PPPP
DDDD | PPPP | PPPP | DDDD | | yucca | Yucca glauca | YUGL | טטטט | טטטט | טטטט | DDDD | טטטט | N = not used; U = undesirable; D = desirable; P = preferred; T = toxic ## **Animal Community – Grazing Interpretations** The following table lists suggested stocking rates for cattle under continuous season-long grazing under normal growing conditions. These are conservative estimates that should be used only as guidelines in the initial stages of the conservation planning process. Often, the current plant composition does not entirely match any particular plant community (as described in this ecological site description). Because of this, a field visit is recommended, in all cases, to document plant composition and production. More precise carrying capacity estimates should eventually be calculated using this information along with animal preference data, particularly when grazers other than cattle are involved. Under more intensive grazing management, improved harvest efficiencies can result in an increased carrying capacity. If distribution problems occur, stocking rates must be reduced to maintain plant health and vigor. | Plant Community | Production
(lb./ac) | Carrying Capacity*
(AUM/ac) | |---|------------------------|--------------------------------| | Historic Climax Plant Community | 350-800 | .20 | | Inland Saltgrass/R. Wheatgrasses/Greasewood | 275-600 | .17 | | Mixed Shrub/Short Grass Sod | 150-400 | .10 | | Dense Shrub/Bare Ground | 100-450 | .05 | | Short Grass Sod | 50-200 | .05 | ^{* -} Continuous, season-long grazing by cattle under average growing conditions. Grazing by domestic livestock is one of the major income-producing industries in the area. Rangeland in this area may provide yearlong forage for cattle, sheep, or horses. During the dormant period, the forage for livestock use needs to be supplemented with protein because the quality does not meet minimum livestock requirements. ## **Hydrology Functions** Water is the principal factor limiting forage production on this site. This site is dominated by soils in hydrologic group B and C, with localized areas in hydrologic group D. Infiltration ranges from moderate to rapid. Runoff potential for this site varies from moderate to high depending on soil hydrologic group and ground cover. In many cases, areas with greater than 75% ground cover have the greatest potential for high infiltration and lower runoff. An example of an exception would be where short-grasses form a strong sod and dominate the site. Areas where ground cover is less than 50% have the greatest potential to have reduced infiltration and higher runoff (refer to Part 630, NRCS National Engineering Handbook for detailed hydrology information). Rills and gullies should not typically be present with the exception of relics, which should now be stabilized. Water flow patterns should be barely distinguishable if at all present. Pedestals are only slightly present in association with bunchgrasses. Litter typically falls in place, and signs of movement are not common. Chemical and physical crusts may be present. Cryptogamic crusts are present, but only cover 1-2% of the soil surface. #### **Recreational Uses** This site provides hunting opportunities for upland game species. The wide variety of plants which bloom from spring until fall have an esthetic value that appeals to visitors. ## **Wood Products** No appreciable wood products are present on the site. ## **Other Products** None noted. # **Supporting Information** #### **Associated Sites** Lowland 032XY228WY Saline Upland 032XY244WY Clayey 032XY204WY ### **Similar Sites** () – Saline Lowland-Drained 10-14" Foothills and Basins East P.Z., 032XY340WY has higher production than Saline lowland-Drained 5-9" WR. ## **Inventory Data References (narrative)** Information presented here has been derived from NRCS inventory data. Field observations from range trained personnel were also used. Those involved in developing this site include: Chris Krassin, Range Management Specialist, NRCS and Everet Bainter, Range Management Specialist, NRCS. Other sources used as references include USDA NRCS Water and Climate Center, USDA NRCS National Range and Pasture Handbook, USDI and USDA Interpreting Indicators of Rangeland Health Version 3, and USDA NRCS Soil Surveys from various counties. ## **Inventory Data References** Ocular field estimations observed by trained personnel. #### **State Correlation** The site occurs entirely in Wyoming. ## **Type Locality** #### Field Offices Casper, Lander, Riverton, Dubious, Fort Washakie ## **Relationship to Other Established Classifications** #### Other References ## **Site Description Approval** | | _ | |-----------------------------------|--------------| | State Range Management Specialist | Date |